Troubleshooting¶
- Even with careful setup and configuration, you may encounter issues with this complex AI infrastructure. This troubleshooting section is designed to help you diagnose and resolve common problems efficiently. Before diving into specific issues, gathering relevant information and checking appropriate logs is important. Here are some general steps to follow when troubleshooting:
- Collect System Information:
- Kubernetes version (
kubectl version
) - Node status (
kubectl get nodes
) - Pod status (
kubectl get pods --all-namespaces
) - Cluster events (
kubectl get events --all-namespaces
)
- Kubernetes version (
- Check the Component Logs:
- Kubernetes system logs:
/var/log/kube-*
on master and worker nodes - Container logs: Use
kubectl logs <pod-name> -n <namespace>
- NVIDIA GPU Operator logs: Check pods in the
gpu-operator-resources
namespace - Kubeflow logs: Examine pods in the
kubeflow
namespace
- Kubernetes system logs:
- Verify Resource Usage:
- Node resource utilization (
kubectl top nodes
) - Pod resource consumption (
kubectl top pods --all-namespaces
) - Pod resource requests and limits per node (
kubectl describe node <hostname>
) - GPU status (
nvidia-smi
on GPU-enabled nodes)
- Node resource utilization (
- Review Configuration Files:
- Kubernetes configuration:
/etc/kubernetes/*
- Kubeflow manifests: Check your Kubeflow installation directory
- NVIDIA GPU Operator values: Review your
gpu-operator-values.yaml
- Kubernetes configuration:
- Network Diagnostics:
- DNS resolution (
nslookup
,dig
) - Network connectivity (
ping
,traceroute
) - Service endpoints (
kubectl get endpoints
)
- DNS resolution (